# sample train: 60000 test: 10000, 28 x 28 (nb_samples, 28, 28)
The train dataset , X_train == image data , y_train == label number, equal as X&y_test
print(‘sample train : ‘, len(X_train)) # 60000
print(‘test : ‘, len(X_test)) # 10000
np_utils.to_categorical to run One-hot encoding , let 0~9 Classification use One-hot encoding to trans 10 binary features , ex: 4 = 0000100000 , 0 = 1000000000
This slideshow requires JavaScript.
Train on 40199 samples,validate on 19801 samples
40 minutes of Epoch 10/10 , RESULT : dense_1= 128 neuron , dense_2= 10 neuron
Hidden Layer dense_1 = 784 x 128 + 128 100480
Outout Layer dense_2 = 1290 = 128 x 10 + 10
Total = 100480 +1290 = 101770
This slideshow requires JavaScript.
ACC / LOSS
This slideshow requires JavaScript.
EarlyStopping(monitor='val_loss', patience=3,
This slideshow requires JavaScript.
binary image —-> Convolutional —–> ReLU
This slideshow requires JavaScript.
Pooling —–> Max-Pooling
This slideshow requires JavaScript.
Flatten —-> Full connected factor : Memory 、CPU、GPU
Comments